- There are 4 hours available for the problems.
- Every problem is worth 10 points.
- Be clear when using a theorem. When you are using an obscure theorem, cite a source.
- Use a different sheet for each exercise.
- Clearly write DRAFT on any draft page you hand in.

MOAWOA

20 March 2015

Problem 1. Let $n \geq 4$ be an integer. Suppose that in a group of $2 n$ people everyone speaks at least one of ℓ languages. Suppose that each of the ℓ languages is spoken by at least k people. We want these people to stand in a circle in such a way that each two neighbors have a common language.
(a) If $\ell=2$, what is the minimal value of k such that this is always possible?
(b) If $\ell=3$, what is the minimal value of k such that this is always possible?

Problem 2. Let $n>1$ be an integer. Show that there exist positive integers a, b, c satisfying $a+b=n$ and $\left|a b-c^{2}\right| \leq 4$.

Problem 3. Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of positive integers and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective function.
(a) Is it possible that $\sum_{n=1}^{\infty} \frac{1}{n f(n)}$ diverges?
(b) Is it possible that $\sum_{n=1}^{\infty} \frac{1}{n+f(n)}$ converges?

Problem 4. Let G be a finite group with identity e and let H and K be subgroups of G such that $|H| \cdot|K|=|G|$ and $H \cap K=\{e\}$. Prove that $H^{\prime} \cap K^{\prime}=\{e\}$ for all conjugate subgroups H^{\prime} and K^{\prime} of H and K, respectively.
For a subgroup Y of a group X, a conjugate subgroup of Y is a subgroup of X that is of the form $x Y x^{-1}$ for some $x \in X$.

Problem 5. Let $n \geq 2$ be an integer and let $A=\left(a_{i, j}\right)$ be a real $n \times n$ matrix with entries $a_{i, j}$ different from 0 that satisfy

$$
a_{i, j} a_{i+1, j+1}-a_{i+1, j} a_{i, j+1}=i j
$$

for all $i, j \in\{1,2, \ldots, n-1\}$. Determine the rank of A.

Problem 6. A biologist studies an exceptional bacterial species. When a bacterium of this species takes d minutes to divide, its two descendants take d and $d+1$ minutes to divide. The biologist starts with a single bacterium that takes 1 minute to divide.
Show that when the total number of bacteria becomes even for the n-th time, it stays even for exactly n minutes.

